25 research outputs found

    Including coronary ostia in patient-specific 3D models of the whole aortic valve apparatus, derived from TEE, for biomechanical simulations

    Get PDF
    There is an increasing interest in the numerical modeling and simulation of the aortic valve behavior and functioning, on the different stages involved as healthy, stenotic or replacement procedure. As echocardiography is a ubiquitous and economic modality, the geometric model construction based on such images is therefore of major interest. In this paper, a new patient-specific approach for modeling the complete aortic valve apparatus - derived from parameters extracted from 3D transesophageal echocardiographs -that includes for the first time the left ventricle outflow tract and the coronary ostia, both crucial for proper assessment of valve biomechanical behavior, is presented. An innovative method for characterizing coronary pressures from patient-specific clinical data, to be used as boundary conditions for the numerical simulation is also described. Results from experiments were presented to evaluate the novel aspects of the model, that permits to compare the existing models (non-coronary model NCM) and the proposed new coronary model (CM). Variations of displacement and stress on each leaflet prove the need of considering leaflet asymmetry. Computed quantities in the results sections are within the range of physiological data. This permits to conclude that the proposed aortic valve apparatus model of the aortic valve apparatus improves on previous ones by considering this extremely complex structure in greater detail.Xunta de Galicia | Ref. IN606A-2017/02

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record The original dataset (v1.1.0) of the CropPol database can be accessed from the ECOLOGY repository. Main upgrades of these datasets will be versioned and deposited in Zenodo (DOI: 10.5281/zenodo.5546600)Data availability. V.C. Computer programs and data-processing algorithms: The algorithms used in deriving, processing, or transforming data can be accessed in the DataS1.zip file and the Zenodo repository (DOI: 10.5281/zenodo.5546600). V.D. Archiving: The data is archived for long-term storage and access in Zenodo (DOI: 10.5281/zenodo.5546600)Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.OBServ Projec

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A biomechanical model of the pathological aortic valve: simulation of aortic stenosis

    No full text
    Aortic stenosis (AS) disease is a narrowing of the aortic valve (AV) opening which reduces blood flow from the heart causing several health complications. Although a lot of work has been done in AV simulations, most of the efforts have been conducted regarding healthy valves. In this article, a new three-dimensional patient-specific biomechanical model of the valve, based on a parametric formulation of the stenosis that permits the simulation of different degrees of pathology, is presented. The formulation is based on a double approach: the first one is done from the geometric point of view, reducing the effective ejection area of the AV by joining leaflets using a zipper effect to sew them; the second one, in terms of functionality, is based on the modification of AV tissue properties due to the effect of calcifications. Both healthy and stenotic valves were created using patient-specific data and results of the numerical simulation of the valve function are provided. Analysis of the results shows a variation in the first principal stress, geometric orifice area, and blood velocity which were validated against clinical data. Thus, the possibility to create a pipeline which allows the integration of patient-specific data from echocardiographic images and iFR studies to perform finite elements analysis is proved.Xunta de Galicia | Ref. IN606A-2017/02

    An aortic root geometric model, based on transesophageal echocardiographic image sequences (TEE), for biomechanical simulation

    No full text
    Aortic valve (AoV) stenosis is one of the most common valvular diseases. Assessing the aortic valve function could provide crucial information towards a better understanding of the disease, where numerical simulation will have an important role to play. The main scope of this work is to find an aortic root (AR) patient specific geometric model, which could be used for simulation purposes. Several models were followed to obtain an AR geometry implementing them in open source tools. Necessary parameters were obtained from 2D echo images. In order to test the obtained AR geometry, a finite element study was performed solving a fixed mesh fluid structure interaction (FSI) model. The fluid was supposed to be laminar and the tissues were modeled as St. Venant-Kirchhoff materials. Obtained results for the 1-way FSI study are compared with the published ones for structural and 2-way FSI studies showing similar results. An AR geometric reconstruction from clinic data is suited for numerical simulation

    Hemodynamics of the left coronary artery after TAVI procedure: a numerical simulation analysis

    No full text
    Background: Experimental results have reported that patients with severe aortic stenosis have reduced coronary flow even with no obstructed lesions in the coronary arteries, with further improvements in this parameter after successful surgical aortic valve replacement

    Predicting TAVI paravalvular regurgitation outcomes based on numerical simulation of the aortic annulus eccentricity and perivalvular areas

    No full text
    Trans-catheter aortic valve implantation (TAVI) is an increasingly adopted technique which provides a minimal invasive solution for patients who suffer from severe aortic stenosis. Some complications of the procedure could be annular rupture or paravalvular leakage, both related with adverse outcome. In TAVI with balloon expandable devices, a mismatch between those two factors leads to a conflict situation, where improving one worsens the other. The presented research proposes a methodology that uses numerical simulation to obtain certain TAVI outcomes related with aortic regurgitation due to paravalvular leakage, such as perivalvular area, aortic eccentricity or annular pressure. The application of the methodology for two patients shows the possibility of predicting those quantities. The highest stress values are distributed along the contact area. Results also show that a great deformation on the aortic annulus does not necessarily imply a higher stress; pressure can either be converted into root reshape or into root stretching. Validation of the results was done using scientific publications, clinical guidelines and clinical reports. Numerical simulation provides a suitable tool that could possibly contribute to optimize the planification procedure adjusting the mismatch between size and pressure.Xunta de Galicia | Ref. IN606A-2017/02
    corecore